Maple 2018.2 Integration Test Results
on the problems in "5 Inverse trig functions/5.6 Inverse cosecant"
Test results for the 48 problems in "5.6.1 u (a+b arccsc (c x))^n.txt"
Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{x^{3}} \mathrm{~d} x
$$

Optimal (type 3, 46 leaves, 4 steps):

$$
\frac{b c^{2} \operatorname{arccsc}(c x)}{4}+\frac{-a-b \operatorname{arccsc}(c x)}{2 x^{2}}-\frac{b c \sqrt{1-\frac{1}{c^{2} x^{2}}}}{4 x}
$$

Result(type 3, 117 leaves):

$$
-\frac{a}{2 x^{2}}-\frac{b \operatorname{arccsc}(c x)}{2 x^{2}}+\frac{c b \sqrt{c^{2} x^{2}-1} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)}{4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}-\frac{c b}{4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}+\frac{b}{4 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x^{3}}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int x^{3}(a+b \operatorname{arccsc}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 93 leaves, 5 steps):

$$
\frac{b^{2} x^{2}}{12 c^{2}}+\frac{x^{4}(a+b \operatorname{arccsc}(c x))^{2}}{4}+\frac{b^{2} \ln (x)}{3 c^{4}}+\frac{b x(a+b \operatorname{arccsc}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{3 c^{3}}+\frac{b x^{3}(a+b \operatorname{arccsc}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{6 c}
$$

Result(type 3, 207 leaves):

$$
\begin{aligned}
& \frac{x^{4} a^{2}}{4}+\frac{b^{2} \operatorname{arccsc}(c x)^{2} x^{4}}{4}+\frac{b^{2} \operatorname{arccsc}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x^{3}}{6 c}+\frac{b^{2} x^{2}}{12 c^{2}}+\frac{b^{2} \operatorname{arccsc}(c x) x \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{3 c^{3}}-\frac{b^{2} \ln \left(\frac{1}{c x}\right)}{3 c^{4}}+\frac{a b x^{4} \operatorname{arccsc}(c x)}{2} \\
& \quad+\frac{a b x^{3}}{6 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{a b x}{6 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{a b}{3 c^{5} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int x^{2}(a+b \operatorname{arccsc}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 4, 159 leaves, 8 steps):
$\frac{b^{2} x}{3 c^{2}}+\frac{x^{3}(a+b \operatorname{arccsc}(c x))^{2}}{3}+\frac{2 b(a+b \operatorname{arccsc}(c x)) \operatorname{arctanh}\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}-\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2,-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}$

$$
+\frac{\mathrm{I} b^{2} \text { polylog }\left(2, \frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}+\frac{b x^{2}(a+b \operatorname{arccsc}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{3 c}
$$

Result(type 4, 326 leaves):
$\frac{x^{3} a^{2}}{3}+\frac{x^{3} b^{2} \operatorname{arccsc}(c x)^{2}}{3}+\frac{b^{2} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} \operatorname{arccsc}(c x) x^{2}}{3 c}+\frac{b^{2} x}{3 c^{2}}+\frac{b^{2} \operatorname{arccsc}(c x) \ln \left(1+\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}-\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2,-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}$

$$
-\frac{b^{2} \operatorname{arccsc}(c x) \ln \left(1-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}+\frac{\mathrm{I} b^{2} \operatorname{polylog}\left(2, \frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{3 c^{3}}+\frac{2 x^{3} a b \operatorname{arccsc}(c x)}{3}+\frac{a b x^{2}}{3 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{a b}{3 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}
$$

$$
+\frac{a b \sqrt{c^{2} x^{2}-1} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{3 c^{4} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int x(a+b \operatorname{arccsc}(c x))^{2} \mathrm{~d} x
$$

Optimal(type 3, 51 leaves, 4 steps):

$$
\frac{x^{2}(a+b \operatorname{arccsc}(c x))^{2}}{2}+\frac{b^{2} \ln (x)}{c^{2}}+\frac{b x(a+b \operatorname{arccsc}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{c}
$$

Result(type 3, 132 leaves):

$$
\frac{x^{2} a^{2}}{2}+\frac{b^{2} x^{2} \operatorname{arccsc}(c x)^{2}}{2}+\frac{b^{2} \operatorname{arccsc}(c x) x \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{c}-\frac{b^{2} \ln \left(\frac{1}{c x}\right)}{c^{2}}+a b x^{2} \operatorname{arccsc}(c x)+\frac{a b x}{c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{a b}{c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}
$$

Problem 9: Result more than twice size of optimal antiderivative.

Optimal(type 4, 127 leaves, 6 steps):
$\frac{\mathrm{I}(a+b \operatorname{arccsc}(c x))^{3}}{3 b}-(a+b \operatorname{arccsc}(c x))^{2} \ln \left(1-\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)^{2}\right)+\mathrm{I} b(a+b \operatorname{arccsc}(c x)) \operatorname{poly} \log \left(2,\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)^{2}\right)$
$-\frac{b^{2} \operatorname{polylog}\left(3,\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)^{2}\right)}{2}$
Result(type 4, 360 leaves):
$a^{2} \ln (c x)+\frac{\mathrm{I} b^{2} \operatorname{arccsc}(c x)^{3}}{3}-b^{2} \operatorname{arccsc}(c x)^{2} \ln \left(1+\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)+2 \mathrm{I} b^{2} \operatorname{arccsc}(c x) \operatorname{polylog}\left(2,-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)-2 b^{2} \operatorname{poly} \log \left(3,-\frac{\mathrm{I}}{c x}\right.$
$\left.-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)-b^{2} \operatorname{arccsc}(c x)^{2} \ln \left(1-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)+2 \mathrm{I} b^{2} \operatorname{arccsc}(c x) \operatorname{polylog}\left(2, \frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)-2 b^{2}$ polylog$\left(3, \frac{\mathrm{I}}{c x}\right.$
$\left.+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)+\mathrm{I} a b \operatorname{arccsc}(c x)^{2}-2 a b \operatorname{arccsc}(c x) \ln \left(1-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)-2 a b \operatorname{arccsc}(c x) \ln \left(1+\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)$
$+2 \mathrm{I} a b$ polylog $\left(2, \frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)+2 \mathrm{I} a b$ polylog $\left(2,-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)$

Problem 10: Result more than twice size of optimal antiderivative.
$\int \frac{(a+b \operatorname{arccsc}(c x))^{2}}{x^{5}} \mathrm{~d} x$
Optimal(type 3, 116 leaves, 5 steps):
$\frac{b^{2}}{32 x^{4}}+\frac{3 b^{2} c^{2}}{32 x^{2}}+\frac{3 a b c^{4} \operatorname{arccsc}(c x)}{16}+\frac{3 b^{2} c^{4} \operatorname{arccsc}(c x)^{2}}{32}-\frac{(a+b \operatorname{arccsc}(c x))^{2}}{4 x^{4}}-\frac{b c(a+b \operatorname{arccsc}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{8 x^{3}}$
$-\frac{3 b c^{3}(a+b \operatorname{arccsc}(c x)) \sqrt{1-\frac{1}{c^{2} x^{2}}}}{16 x}$
Result(type 3, 264 leaves):
$-\frac{a^{2}}{4 x^{4}}-\frac{b^{2} \operatorname{arccsc}(c x)^{2}}{4 x^{4}}+\frac{3 b^{2} c^{4} \operatorname{arccsc}(c x)^{2}}{32}-\frac{3 c^{3} b^{2} \operatorname{arccsc}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{16 x}-\frac{c b^{2} \operatorname{arccsc}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}{8 x^{3}}+\frac{b^{2}}{32 x^{4}}+\frac{3 b^{2} c^{2}}{32 x^{2}}-\frac{a b \operatorname{arccsc}(c x)}{2 x^{4}}$

$$
+\frac{3 c^{3} a b \sqrt{c^{2} x^{2}-1} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}-\frac{3 c^{3} a b}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}+\frac{c a b}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x^{3}}+\frac{a b}{8 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x^{5}}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \operatorname{arccsc}(c x))^{3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 76 leaves, 5 steps):

$$
\frac{6 b^{2}(a+b \operatorname{arccsc}(c x))}{x}-\frac{(a+b \operatorname{arccsc}(c x))^{3}}{x}+6 b^{3} c \sqrt{1-\frac{1}{c^{2} x^{2}}}-3 b c(a+b \operatorname{arccsc}(c x))^{2} \sqrt{1-\frac{1}{c^{2} x^{2}}}
$$

Result(type 3, 198 leaves):
$c\left(-\frac{a^{3}}{c x}+b^{3}\left(-\frac{\operatorname{arccsc}(c x)^{3}}{c x}-3 \operatorname{arccsc}(c x)^{2} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}+6 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}+\frac{6 \operatorname{arccsc}(c x)}{c x}\right)+3 a b^{2}\left(-\frac{\operatorname{arccsc}(c x)^{2}}{c x}+\frac{2}{c x}\right.\right.$

$$
\left.\left.-2 \operatorname{arccsc}(c x) \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}\right)+3 a^{2} b\left(-\frac{\operatorname{arccsc}(c x)}{c x}-\frac{c^{2} x^{2}-1}{\sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} c^{2} x^{2}}\right)\right)
$$

Problem 14: Unable to integrate problem.

$$
\int(d x)^{m}(a+b \operatorname{arccsc}(c x)) \mathrm{d} x
$$

Optimal(type 5, 62 leaves, 3 steps):

$$
\frac{(d x)^{1+m}(a+b \operatorname{arccsc}(c x))}{d(1+m)}+\frac{b(d x)^{m} \text { hypergeom }\left(\left[\frac{1}{2},-\frac{m}{2}\right],\left[1-\frac{m}{2}\right], \frac{1}{c^{2} x^{2}}\right)}{c m(1+m)}
$$

Result(type 8, 16 leaves):

$$
\int(d x)^{m}(a+b \operatorname{arccsc}(c x)) \mathrm{d} x
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int(e x+d)^{2}(a+b \operatorname{arccsc}(c x)) \mathrm{d} x
$$

Optimal(type 3, 109 leaves, 10 steps):

$$
-\frac{b d^{3} \operatorname{arccsc}(c x)}{3 e}+\frac{(e x+d)^{3}(a+b \operatorname{arccsc}(c x))}{3 e}+\frac{b\left(6 c^{2} d^{2}+e^{2}\right) \operatorname{arctanh}\left(\sqrt{1-\frac{1}{c^{2} x^{2}}}\right)}{6 c^{3}}+\frac{b d e x \sqrt{1-\frac{1}{c^{2} x^{2}}}}{c}+\frac{b e^{2} x^{2} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{6 c}
$$

Result(type 3, 360 leaves):

$$
\begin{aligned}
& \frac{a e^{2} x^{3}}{3}+a e x^{2} d+a x d^{2}+\frac{a d^{3}}{3 e}+\frac{b e^{2} \operatorname{arccsc}(c x) x^{3}}{3}+b e \operatorname{arccsc}(c x) x^{2} d+b \operatorname{arccsc}(c x) x d^{2}+\frac{b d^{3} \operatorname{arccsc}(c x)}{3 e}-\frac{b \sqrt{c^{2} x^{2}-1} d^{3} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)}{3 c e \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} \sqrt[x]{ }} \\
& +\frac{b \sqrt{c^{2} x^{2}-1} d^{2} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{c^{2} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x}+\frac{b e^{2} x^{2}}{6 c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b e^{2}}{6 c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}+\frac{b e x d}{c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}}}-\frac{b e d}{c^{3} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x}} \\
& +\frac{b e^{2} \sqrt{c^{2} x^{2}-1} \ln \left(c x+\sqrt{c^{2} x^{2}-1}\right)}{\sqrt{c^{2} x^{2}-1}} \\
& 6 c^{4} \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x
\end{aligned}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{(e x+d)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 98 leaves, 7 steps):

$$
\frac{b \operatorname{arccsc}(c x)}{d e}+\frac{-a-b \operatorname{arccsc}(c x)}{e(e x+d)}+\frac{b \operatorname{arctanh}\left(\frac{c^{2} d+\frac{e}{x}}{c \sqrt{c^{2} d^{2}-e^{2}} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right)}{d \sqrt{c^{2} d^{2}-e^{2}}}
$$

Result(type 3, 213 leaves):

$$
-\frac{c a}{(c e x+c d) e}-\frac{c b \operatorname{arccsc}(c x)}{(c e x+c d) e}+\frac{b \sqrt{c^{2} x^{2}-1} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)}{c e \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x d}-\frac{b \sqrt{c^{2} x^{2}-1} \ln \left(\frac{2\left(\sqrt{c^{2} x^{2}-1} \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}} e-c^{2} d x-e\right)}{c e x+c d}\right)}{c e \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}} x d \sqrt{\frac{c^{2} d^{2}-e^{2}}{e^{2}}}}}
$$

Problem 18: Result more than twice size of optimal antiderivative.
$\int(e x+d)^{3 / 2}(a+b \operatorname{arccsc}(c x)) \mathrm{d} x$

Optimal(type 4, 335 leaves, 22 steps):
$\frac{2(e x+d)^{5 / 2}(a+b \operatorname{arccsc}(c x))}{5 e}-\frac{4 b e\left(-c^{2} x^{2}+1\right) \sqrt{e x+d}}{15 c^{3} x \sqrt{1-\frac{1}{c^{2} x^{2}}}}-\frac{28 b d \operatorname{EllipticE}\left(\frac{\sqrt{-c x+1} \sqrt{2}}{2}, \sqrt{2} \sqrt{\frac{e}{c d+e}}\right) \sqrt{e x+d} \sqrt{-c^{2} x^{2}+1}}{15 c^{2} x \sqrt{1-\frac{1}{c^{2} x^{2}}} \sqrt{\frac{c(e x+d)}{c d+e}}}$
$-\xrightarrow{4 b\left(2 c^{2} d^{2}+e^{2}\right) \text { EllipticF }\left(\frac{\sqrt{-c x+1} \sqrt{2}}{2}, \sqrt{2} \sqrt{\frac{e}{c d+e}}\right) \sqrt{\frac{c(e x+d)}{c d+e}} \sqrt{-c^{2} x^{2}+1}}$

$$
15 c^{4} x \sqrt{1-\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}
$$

$-\frac{4 b d^{3} \text { EllipticPi }\left(\frac{\sqrt{-c x+1} \sqrt{2}}{2}, 2, \sqrt{2} \sqrt{\frac{e}{c d+e}}\right) \sqrt{\frac{c(e x+d)}{c d+e}} \sqrt{-c^{2} x^{2}+1}}{}$

$$
5 \operatorname{cex} \sqrt{1-\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}
$$

Result(type 4, 809 leaves):

$$
\begin{aligned}
& \frac{1}{e}\left(2 \left(\frac{(e x+d)^{5 / 2} a}{5}+b\left(\frac{(e x+d)^{5 / 2} \operatorname{arccsc}(c x)}{5}+\frac{1}{15 c^{3} \sqrt{\frac{c}{c d-e}} x \sqrt{\frac{(e x+d)^{2} c^{2}-2(e x+d) c^{2} d+c^{2} d^{2}-e^{2}}{c^{2} x^{2} e^{2}}}}(2) \sqrt{\frac{c}{c d-e}}(e x+d)^{5 /}\right.\right.\right. \\
& 2 c^{2}+9 d^{2} \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d+e}}\right) c^{2} \\
& -7 \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticE }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d+e}}\right) c^{2} d^{2} \\
& -3 d^{2} \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \operatorname{EllipticPi}\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \frac{c d-e}{c d}, \frac{\sqrt{\frac{c}{c d+e}}}{\sqrt{\frac{c}{c d-e}}}\right) c^{2}-2 \sqrt{\frac{c}{c d-e}}(e x+d)^{3} / 2 c^{2} d \\
& +7 \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d+e}}\right) c d e
\end{aligned}
$$

$-7 \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}}$ EllipticE $\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d+e}}\right) c d e+\sqrt{\frac{c}{c d-e}} \sqrt{e x+d} c^{2} d^{2}$
$+\sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \operatorname{EllipticF}\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d+e}}\right) e^{2}-\sqrt{\frac{c}{c d-e}} \sqrt{e x+d} e^{2}$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{2}(a+b \operatorname{arccsc}(c x))}{(e x+d)^{5 / 2}} \mathrm{~d} x
$$

$$
\begin{aligned}
& \text { Optimal (type 4, } 401 \text { leaves, } 25 \text { steps) : } \\
& -\frac{2 d^{2}(a+b \operatorname{arccsc}(c x))}{3 e^{3}(e x+d)^{3 / 2}}+\frac{4 d(a+b \operatorname{arccsc}(c x))}{e^{3} \sqrt{e x+d}}+\frac{4 b d\left(-c^{2} x^{2}+1\right)}{3 c e\left(c^{2} d^{2}-e^{2}\right) x \sqrt{1-\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}}+\frac{2(a+b \operatorname{arccsc}(c x)) \sqrt{e x+d}}{e^{3}}
\end{aligned}
$$

$$
-\frac{4 b d \text { EllipticE }\left(\frac{\sqrt{-c x+1} \sqrt{2}}{2}, \sqrt{2} \sqrt{\frac{e}{c d+e}}\right) \sqrt{e x+d} \sqrt{-c^{2} x^{2}+1}}{}
$$

$$
3 e^{2}\left(c^{2} d^{2}-e^{2}\right) x \sqrt{1-\frac{1}{c^{2} x^{2}}} \sqrt{\frac{c(e x+d)}{c d+e}}
$$

$$
-\frac{4 b \text { EllipticF }\left(\frac{\sqrt{-c x+1} \sqrt{2}}{2}, \sqrt{2} \sqrt{\frac{e}{c d+e}}\right) \sqrt{\frac{c(e x+d)}{c d+e}} \sqrt{-c^{2} x^{2}+1}}{2}
$$

$$
c^{2} e^{2} x \sqrt{1-\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}
$$

$$
-\frac{32 b d \text { EllipticPi }\left(\frac{\sqrt{-c x+1} \sqrt{2}}{2}, 2, \sqrt{2} \sqrt{\frac{e}{c d+e}}\right) \sqrt{\frac{c(e x+d)}{c d+e}} \sqrt{-c^{2} x^{2}+1}}{2}
$$

$$
3 c e^{3} x \sqrt{1-\frac{1}{c^{2} x^{2}}} \sqrt{e x+d}
$$

Result(type 4, 1039 leaves):
$\frac{1}{e^{3}}\left(2\left(a\left(\sqrt{e x+d}-\frac{d^{2}}{3(e x+d)^{3 / 2}}+\frac{2 d}{\sqrt{e x+d}}\right)+b\left(\operatorname{arccsc}(c x) \sqrt{e x+d}-\frac{\operatorname{arccsc}(c x) d^{2}}{3(e x+d)^{3 / 2}}+\frac{2 \operatorname{arccsc}(c x) d}{\sqrt{e x+d}}\right.\right.\right.$

$$
\begin{aligned}
& +\left(2 \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \operatorname{EllipticF}\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d+e}}\right) \sqrt{e x+d} c^{2} d^{2}-\sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(\epsilon}{}}\right. \\
& \left.\sqrt{\frac{c d-e}{c d+e}}\right) \sqrt{e x+d} c^{2} d^{2}-8 \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticPi }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \frac{c d-e}{c d},\right. \\
& \left.\frac{\sqrt{\frac{c}{c d+e}}}{\sqrt{\frac{c}{c d-e}}}\right) \sqrt{e x+d} c^{2} d^{2}-\sqrt{\frac{c}{c d-e}}(e x+d)^{2} c^{2} d+\sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}},\right. \\
& \left.\sqrt{\frac{c d-e}{c d+e}}\right) \sqrt{e x+d} c d e-\sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticE }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d+e}}\right) \sqrt{e x+d} c d e \\
& +2 \sqrt{\frac{c}{c d-e}}(e x+d) c^{2} d^{2}-3 \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticF }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \sqrt{\frac{c d-e}{c d}+e}\right) \sqrt{e x+d} e^{2} \\
& +8 \sqrt{-\frac{c(e x+d)-c d+e}{c d-e}} \sqrt{-\frac{c(e x+d)-c d-e}{c d+e}} \text { EllipticPi }\left(\sqrt{e x+d} \sqrt{\frac{c}{c d-e}}, \frac{c d-e}{c d}, \frac{\sqrt{\frac{c}{c d+e}}}{\sqrt{\frac{c}{c d-e}}}\right) \sqrt{e x+d} e^{2}-\sqrt{\frac{c}{c d-e}} c^{2} d^{3} \\
& \left.\left.\left.\left.+\sqrt{\frac{c}{c d-e}} d e^{2}\right) /\left(3 c(c d-e) \sqrt{\frac{c}{c d-e}} \sqrt{e x+d}(c d+e) x \sqrt{\frac{(e x+d)^{2} c^{2}-2(e x+d) c^{2} d+c^{2} d^{2}-e^{2}}{c^{2} x^{2} e^{2}}}\right)\right)\right)\right)
\end{aligned}
$$

Problem 28: Result is not expressed in closed-form.

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 4, 517 leaves, 19 steps):

$$
\begin{aligned}
& -\frac{(a+b \operatorname{arccsc}(c x)) \ln \left(1-\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}+\frac{(a+b \operatorname{arccsc}(c x)) \ln \left(1+\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}} \\
& -\frac{(a+b \operatorname{arccsc}(c x)) \ln \left(1-\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{(a+b \operatorname{arccsc}(c x)) \ln \left(1+\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)} \\
& -\frac{\mathrm{I} b \text { polylog }\left(2, \frac{-\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}+\frac{\mathrm{I} b \text { polylog }\left(2, \frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}} \\
& -\frac{\mathrm{I} b \text { polylog }\left(2, \frac{-\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}+\frac{\mathrm{I} b \text { polylog }\left(2, \frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{2 \sqrt{-d} \sqrt{e}}
\end{aligned}
$$

Result(type 7, 271 leaves):

Problem 29: Result is not expressed in closed-form.

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{x\left(e x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 496 leaves, 19 steps):

Result(type 7, 447 leaves):
$\frac{a \ln (c x)}{d}-\frac{a \ln \left(c^{2} e x^{2}+c^{2} d\right)}{2 d}+\frac{\mathrm{I} b \operatorname{arccsc}(c x)^{2}}{2 d}$

$$
+\frac{1}{2 d}(\mathrm{I} b
$$

$$
\sum_{-R I=R o o t O f\left(c^{2} d_{-} z^{4}+\left(-2 c^{2} d-4 e\right) _^{2}+c^{2} d\right)}
$$

$\left.\frac{\left(__{-} R l^{2} c^{2} d-2 c^{2} d-4 e\right)\left(\operatorname{Iarccsc}(c x) \ln \left(\frac{-R 1-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}}{R 1}\right)+\operatorname{dilog}\left(\frac{-R 1-\frac{\mathrm{I}}{c x}-\sqrt{1-\frac{1}{c^{2} x^{2}}}}{R 1}\right)\right)}{_^{R} l^{2} c^{2} d-c^{2} d-2 e}\right)$

Problem 30: Result is not expressed in closed-form.

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{x^{2}\left(e x^{2}+d\right)} \mathrm{d} x
$$

Optimal(type 4, 558 leaves, 24 steps):
$-\frac{a}{d x}-\frac{b \operatorname{arccsc}(c x)}{d x}-\frac{(a+b \operatorname{arccsc}(c x)) \ln \left(1-\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}$

$$
+\frac{\left.(a+b \operatorname{arccsc}(c x)) \ln \left(1+\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{e}\right)(a+b \operatorname{arccsc}(c x)) \ln \left(1-\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}-\frac{(-d)^{3 / 2}}{2(2}
$$

$$
+\frac{\left.(a+b \operatorname{arccsc}(c x)) \ln \left(1+\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{e}\right)}{2(-d)^{3 / 2}}-\frac{\mathrm{I} b \operatorname{polylog}\left(2, \frac{-\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}
$$

$$
+\frac{\mathrm{I} b \text { polylog }\left(2, \frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}-\frac{\mathrm{I} b \operatorname{poly} \log \left(2, \frac{-\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}
$$

$$
+\frac{\mathrm{I} b \text { polylog }\left(2, \frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right) \sqrt{e}}{2(-d)^{3 / 2}}-\frac{b c \sqrt{1-\frac{1}{c^{2} x^{2}}}}{d}
$$

Result (type 7, 331 leaves):

Problem 31: Result more than twice size of optimal antiderivative.

$$
\int \frac{x(a+b \operatorname{arccsc}(c x))}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 168 leaves, 8 steps):

$$
\frac{-a-b \operatorname{arccsc}(c x)}{4 e\left(e x^{2}+d\right)^{2}}-\frac{b c x \arctan \left(\sqrt{c^{2} x^{2}-1}\right)}{4 d^{2} e \sqrt{c^{2} x^{2}}}+\frac{b c\left(3 c^{2} d+2 e\right) x \arctan \left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{\sqrt{c^{2} d+e}}\right)}{8 d^{2}\left(c^{2} d+e\right)^{3 / 2} \sqrt{e} \sqrt{c^{2} x^{2}}}+\frac{b-1}{8 d\left(c^{2} d+e\right)\left(e x^{2}+d\right) \sqrt{c^{2} x^{2}}}
$$

Result(type 3, 1839 leaves):

$$
-\frac{c^{4} a}{4 e\left(c^{2} e x^{2}+c^{2} d\right)^{2}}-\frac{c^{4} b \operatorname{arccsc}(c x)}{4 e\left(c^{2} e x^{2}+c^{2} d\right)^{2}}-\frac{c^{3} b \sqrt{c^{2} x^{2}-1} x \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right) e}{4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} d\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)}
$$

$$
c^{3} b \sqrt{c^{2} x^{2}-1} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right)
$$

$4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)$

$$
\begin{aligned}
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}-1} x \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e+\sqrt{-e d c^{2}} c x-e\right)}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} d \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right.}\right) e}{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right) . \\
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}-1} \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e+\sqrt{-e d c^{2}} c x-e\right)}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right.}\right)}{1-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right) \quad \\
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}-1} x \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e-\sqrt{-e d c^{2}} c x-e\right)}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} d \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right.}\right) e}{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right) \quad \\
& \left.+\frac{3 c^{3} b \sqrt{c^{2} x^{2}-1} \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e-\sqrt{-e d c^{2}} c x-e\right)}{16 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right.}\right)}{\left(-e d c^{2}\right.}\right)\left(c x e+\sqrt{-e d c^{2}}\right) \quad \\
& -\frac{c b \sqrt{c^{2} x^{2}-1} x \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right) e^{2}}{4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} d^{2}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)}-\frac{c b \sqrt{c^{2} x^{2}-1} \arctan \left(\frac{1}{\sqrt{c^{2} x^{2}-1}}\right) e}{4 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x d\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)} \\
& -\frac{c^{3} b x e}{8 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} d\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)}+\frac{c b e}{8 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x d\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)} \\
& \left.+\frac{c b \sqrt{c^{2} x^{2}-1} x \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e+\sqrt{-e d c^{2}} c x-e\right)}{8 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} d^{2} \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right.}\right) e^{2}}{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right) \quad
\end{aligned}
$$

Problem 32: Result is not expressed in closed-form.

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{\left(e x^{2}+d\right)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 1002 leaves, 81 steps):

$$
-\frac{b e \operatorname{arctanh}\left(\frac{c^{2} d-\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2}\left(c^{2} d+e\right)^{3 / 2}}-\frac{b e \operatorname{arctanh}\left(\frac{c^{2} d+\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2}\left(c^{2} d+e\right)^{3 / 2}}
$$

$$
-\frac{3(a+b \operatorname{arccsc}(c x)) \ln \left(1-\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}+\frac{3(a+b \operatorname{arccsc}(c x)) \ln \left(1+\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}
$$

$$
\begin{aligned}
& \left.+\frac{c b \sqrt{c^{2} x^{2}-1} \ln \left(-\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e+\sqrt{-e d c^{2}} c x-e\right)}{8 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x d \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right.}\right) e}{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right) \\
& +\frac{c b \sqrt{c^{2} x^{2}-1} x \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e-\sqrt{-e d c^{2}} c x-e\right)}{8 \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} d^{2} \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)}\right.}{\sqrt{-e d c^{2}}} \\
& +\frac{c b \sqrt{c^{2} x^{2}-1} \ln \left(\frac{2\left(\sqrt{-\frac{c^{2} d+e}{e}} \sqrt{c^{2} x^{2}-1} e-\sqrt{-e d c^{2}} c x-e\right)}{c \sqrt{\frac{c^{2} x^{2}-1}{c^{2} x^{2}}} x d \sqrt{-\frac{c^{2} d+e}{e}}\left(c^{2} d+e\right)\left(-c x e+\sqrt{-e d c^{2}}\right)\left(c x e+\sqrt{-e d c^{2}}\right)}\right.}{8 \sqrt{-e d c^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3(a+b \operatorname{arccsc}(c x)) \ln \left(1-\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}+\frac{3(a+b \operatorname{arccsc}(c x)) \ln \left(1+\frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}} \\
& -\frac{3 \mathrm{I} b \operatorname{polylog}\left(2, \frac{-\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}-\frac{3 \mathrm{I} b \text { polylog }\left(2, \frac{-\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}} \\
& +\frac{3 \mathrm{I} b \text { polylog }\left(2, \frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}+\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}+\frac{3 \mathrm{I} b \text { polylog }\left(2, \frac{\mathrm{I} c\left(\frac{\mathrm{I}}{c x}+\sqrt{1-\frac{1}{c^{2} x^{2}}}\right) \sqrt{-d}}{\sqrt{e}-\sqrt{c^{2} d+e}}\right)}{16(-d)^{5 / 2} \sqrt{e}}+ \\
& \frac{(a+b \operatorname{arccsc}(c x)) \sqrt{e}}{16(-d)^{3 / 2}\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)^{2}} \\
& \frac{5 b \operatorname{arctanh}\left(\frac{c^{2} d-\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2} \sqrt{c^{2} d+e}} \\
& +\frac{5 b \operatorname{arctanh}\left(\frac{c^{2} d+\frac{\sqrt{-d} \sqrt{e}}{x}}{c \sqrt{d} \sqrt{c^{2} d+e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}\right)}{16 d^{5 / 2} \sqrt{c^{2} d+e}}-\frac{b c \sqrt{e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{16(-d)^{3 / 2}\left(c^{2} d+e\right)\left(-\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}-\frac{b c \sqrt{e} \sqrt{1-\frac{1}{c^{2} x^{2}}}}{16(-d)^{3 / 2}\left(c^{2} d+e\right)\left(\frac{d}{x}+\sqrt{-d} \sqrt{e}\right)}
\end{aligned}
$$

Result(type ?, 3165 leaves): Display of huge result suppressed!
Problem 33: Unable to integrate problem.

$$
\int x^{5}(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 343 leaves, 12 steps):
$\frac{d^{2}\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsc}(c x))}{3 e^{3}}-\frac{2 d\left(e x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccsc}(c x))}{5 e^{3}}+\frac{\left(e x^{2}+d\right)^{7 / 2}(a+b \operatorname{arccsc}(c x))}{7 e^{3}}$

$$
\begin{aligned}
& -\frac{8 b c d^{7} / 2 x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{105 e^{3} \sqrt{c^{2} x^{2}}}+\frac{b\left(105 d^{3} c^{6}-35 c^{4} d^{2} e+63 c^{2} d e^{2}+75 e^{3}\right) x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{1680 c^{6} e^{5 / 2} \sqrt{c^{2} x^{2}}} \\
& -\frac{b\left(29 c^{2} d-25 e\right) x\left(e x^{2}+d\right)^{3 / 2} \sqrt{c^{2} x^{2}-1}}{840 c^{3} e^{2} \sqrt{c^{2} x^{2}}}+\frac{b x\left(e x^{2}+d\right)^{5 / 2} \sqrt{c^{2} x^{2}-1}}{42 c e^{2} \sqrt{c^{2} x^{2}}}-\frac{b\left(23 c^{4} d^{2}+12 e d c^{2}-75 e^{2}\right) x \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{1680 c^{5} e^{2} \sqrt{c^{2} x^{2}}}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int x^{5}(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Problem 34: Unable to integrate problem.

$$
\int x^{3}(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 246 leaves, 11 steps):

$$
\begin{aligned}
-\frac{d\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsc}(c x))}{3 e^{2}}+\frac{\left(e x^{2}+d\right)^{5 / 2}(a+b \operatorname{arccsc}(c x))}{5 e^{2}}+\frac{2 b c d^{5 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{15 e^{2} \sqrt{c^{2} x^{2}}} \\
-\frac{b\left(15 c^{4} d^{2}-10 e d c^{2}-9 e^{2}\right) x \operatorname{arctanh}\left(\frac{\sqrt{e \sqrt{c^{2} x^{2}-1}}}{c \sqrt{e x^{2}+d}}\right)}{120 c^{4} e^{3 / 2} \sqrt{c^{2} x^{2}}}+\frac{b x\left(e x^{2}+d\right)^{3 / 2} \sqrt{c^{2} x^{2}-1}}{20 c e \sqrt{c^{2} x^{2}}}+\frac{b\left(c^{2} d+9 e\right) x \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{120 c^{3} e \sqrt{c^{2} x^{2}}}
\end{aligned}
$$

Result(type 8, 23 leaves):

$$
\int x^{3}(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Problem 35: Unable to integrate problem.

$$
\int x(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Optimal(type 3, 159 leaves, 9 steps):

$$
\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsc}(c x))}{3 e}-\frac{b c d^{3 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{3 e \sqrt{c^{2} x^{2}}}+\frac{b\left(3 c^{2} d+e\right) x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{6 c^{2} \sqrt{e} \sqrt{c^{2} x^{2}}}+\frac{b x \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{6 c \sqrt{c^{2} x^{2}}}
$$

Result(type 8, 21 leaves):

$$
\int x(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d} \mathrm{~d} x
$$

Problem 38: Unable to integrate problem.

$$
\int \frac{(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 286 leaves, 11 steps):

$$
-\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsc}(c x))}{3 d x^{3}}-\frac{2 b c\left(c^{2} d+2 e\right) \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{9 d \sqrt{c^{2} x^{2}}}-\frac{b c \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{9 x^{2} \sqrt{c^{2} x^{2}}}
$$

$$
+\frac{2 b c^{2}\left(c^{2} d+2 e\right) x \text { EllipticE }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{e x^{2}+d}}{9 d \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{1+\frac{e x^{2}}{d}}}
$$

$$
-\quad b\left(c^{2} d+e\right)\left(2 c^{2} d+3 e\right) x \text { EllipticF }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{1+\frac{e x^{2}}{d}}
$$

$$
9 d \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}
$$

Result(type 8, 23 leaves):

$$
\int \frac{(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d}}{x^{4}} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{x^{5}(a+b \operatorname{arccsc}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 212 leaves, 10 steps):
$\frac{\left(e x^{2}+d\right)^{3 / 2}(a+b \operatorname{arccsc}(c x))}{3 e^{3}}+\frac{8 b c d^{3 / 2} x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right)}{3 e^{3} \sqrt{c^{2} x^{2}}}-\frac{b\left(9 c^{2} d-e\right) x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{e^{3} \sqrt{e x^{2}+d}}-\frac{d^{2}(a+b \operatorname{arccsc}(c x))}{6 c^{2} e^{5 / 2} \sqrt{c^{2} x^{2}}}$

$$
-\frac{2 d(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d}}{e^{3}}+\frac{b x \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{6 c e^{2} \sqrt{c^{2} x^{2}}}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x^{5}(a+b \operatorname{arccsc}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{x^{3}(a+b \operatorname{arccsc}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 132 leaves, 9 steps):

$$
\frac{b x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{e^{3 / 2} \sqrt{c^{2} x^{2}}}-\frac{2 b c x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right) \sqrt{d}}{e^{2} \sqrt{c^{2} x^{2}}}+\frac{d(a+b \operatorname{arccsc}(c x))}{e^{2} \sqrt{e x^{2}+d}}+\frac{(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d}}{e^{2}}
$$

Result (type 8, 23 leaves):

$$
\int \frac{x^{3}(a+b \operatorname{arccsc}(c x))}{\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{x^{2}\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 249 leaves, 10 steps):

$$
\frac{-a-b \operatorname{arccsc}(c x)}{d x \sqrt{e x^{2}+d}}-\frac{2 e x(a+b \operatorname{arccsc}(c x))}{d^{2} \sqrt{e x^{2}+d}}-\frac{b c \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}}{d^{2} \sqrt{c^{2} x^{2}}}+\frac{b c^{2} x \operatorname{EllipticE}\left(c x, \sqrt{\left.-\frac{e}{c^{2} d}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{e x^{2}+d}}\right.}{\frac{d^{2} \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{1+\frac{e x^{2}}{d}}}{}}
$$

$$
-\frac{b\left(c^{2} d+2 e\right) x \text { EllipticF }\left(c x, \sqrt{-\frac{e}{c^{2} d}}\right) \sqrt{-c^{2} x^{2}+1} \sqrt{1+\frac{e x^{2}}{d}}}{1}
$$

$$
d^{2} \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1} \sqrt{e x^{2}+d}
$$

Result(type 8, 23 leaves):

$$
\int \frac{a+b \operatorname{arccsc}(c x)}{x^{2}\left(e x^{2}+d\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \frac{x^{5}(a+b \operatorname{arccsc}(c x))}{\left(e x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 205 leaves, 10 steps):
$-\frac{d^{2}(a+b \operatorname{arccsc}(c x))}{3 e^{3}\left(e x^{2}+d\right)^{3 / 2}}+\frac{b x \operatorname{arctanh}\left(\frac{\sqrt{e} \sqrt{c^{2} x^{2}-1}}{c \sqrt{e x^{2}+d}}\right)}{e^{5 / 2} \sqrt{c^{2} x^{2}}}-\frac{8 b c x \arctan \left(\frac{\sqrt{e x^{2}+d}}{\sqrt{d} \sqrt{c^{2} x^{2}-1}}\right) \sqrt{d}}{3 e^{3} \sqrt{c^{2} x^{2}}}+\frac{2 d(a+b \operatorname{arccsc}(c x))}{e^{3} \sqrt{e x^{2}+d}}$

$$
+\frac{b c d x \sqrt{c^{2} x^{2}-1}}{3 e^{2}\left(c^{2} d+e\right) \sqrt{c^{2} x^{2}} \sqrt{e x^{2}+d}}+\frac{(a+b \operatorname{arccsc}(c x)) \sqrt{e x^{2}+d}}{e^{3}}
$$

Result (type 8, 23 leaves):

$$
\int \frac{x^{5}(a+b \operatorname{arccsc}(c x))}{\left(e x^{2}+d\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 47: Unable to integrate problem.

$$
\int(f x)^{m}\left(e x^{2}+d\right)^{3}(a+b \operatorname{arccsc}(c x)) \mathrm{d} x
$$

Optimal(type 5, 563 leaves, 6 steps):
$\frac{d^{3}(f x)^{1+m}(a+b \operatorname{arccsc}(c x))}{f(1+m)}+\frac{3 d^{2} e(f x)^{3+m}(a+b \operatorname{arccsc}(c x))}{f^{3}(3+m)}+\frac{3 d e^{2}(f x)^{5+m}(a+b \operatorname{arccsc}(c x))}{f^{5}(5+m)}+\frac{e^{3}(f x)^{7+m}(a+b \operatorname{arccsc}(c x))}{f^{7}(7+m)}$

$$
\begin{aligned}
& +\frac{1}{c^{5} f(1+m)(2+m)(4+m)(6+m) \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1}}\left(b \left(\frac{c^{6} d^{3}(2+m)(4+m)(6+m)}{1+m}\right.\right. \\
& \left.+\frac{e(1+m)\left(e^{2}\left(m^{2}+8 m+15\right)^{2}+3 c^{2} d e(3+m)^{2}\left(m^{2}+13 m+42\right)+3 c^{4} d^{2}\left(m^{4}+22 m^{3}+179 m^{2}+638 m+840\right)\right)}{(3+m)(5+m)(7+m)}\right) \\
& \left.x(f x)^{1+m} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}\right) \\
& +\frac{b e\left(e^{2}\left(m^{2}+8 m+15\right)^{2}+3 c^{2} d e(3+m)^{2}\left(m^{2}+13 m+42\right)+3 c^{4} d^{2}\left(m^{4}+22 m^{3}+179 m^{2}+638 m+840\right)\right) x(f x)^{1+m} \sqrt{c^{2} x^{2}-1}}{c^{5} f(2+m)(3+m)(4+m)(5+m)(6+m)(7+m) \sqrt{c^{2} x^{2}}} \\
& +\frac{b e^{2}\left(e(5+m)^{2}+3 c^{2} d\left(m^{2}+13 m+42\right)\right) x(f x)^{3+m} \sqrt{c^{2} x^{2}-1}}{c^{3} f^{3}(4+m)(5+m)(6+m)(7+m) \sqrt{c^{2} x^{2}}}+\frac{b e^{3} x(f x)^{5+m} \sqrt{c^{2} x^{2}-1}}{c f^{5}(6+m)(7+m) \sqrt{c^{2} x^{2}}}
\end{aligned}
$$

Result(type 8, 25 leaves):

$$
\int(f x)^{m}\left(e x^{2}+d\right)^{3}(a+b \operatorname{arccsc}(c x)) \mathrm{d} x
$$

Problem 48: Unable to integrate problem.

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \operatorname{arccsc}(c x)) \mathrm{d} x
$$

Optimal(type 5, 201 leaves, 5 steps):
$\frac{d(f x)^{1+m}(a+b \operatorname{arccsc}(c x))}{f(1+m)}+\frac{e(f x)^{3+m}(a+b \operatorname{arccsc}(c x))}{f^{3}(3+m)}$

$$
+\frac{b\left(e(1+m)^{2}+c^{2} d(2+m)(3+m)\right) x(f x)^{1+m} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{1}{2}+\frac{m}{2}\right],\left[\frac{3}{2}+\frac{m}{2}\right], c^{2} x^{2}\right) \sqrt{-c^{2} x^{2}+1}}{c f(1+m)^{2}(2+m)(3+m) \sqrt{c^{2} x^{2}} \sqrt{c^{2} x^{2}-1}}+\frac{b e x(f x)^{1+m} \sqrt{c^{2} x^{2}-1}}{c f\left(m^{2}+5 m+6\right) \sqrt{c^{2} x^{2}}}
$$

Result(type 8, 23 leaves):

$$
\int(f x)^{m}\left(e x^{2}+d\right)(a+b \operatorname{arccsc}(c x)) \mathrm{d} x
$$

Test results for the 17 problems in "5.6.2 Inverse cosecant functions.txt"

Problem 1: Unable to integrate problem.

$$
\int \frac{\operatorname{arccsc}\left(x^{5} a\right)}{x} \mathrm{~d} x
$$

Optimal(type 4, 78 leaves, 7 steps):

$$
\frac{\operatorname{Iarccsc}\left(x^{5} a\right)^{2}}{10}-\frac{\operatorname{arccsc}\left(x^{5} a\right) \ln \left(1-\left(\frac{\mathrm{I}}{x^{5} a}+\sqrt{1-\frac{1}{x^{10} a^{2}}}\right)^{2}\right)}{5}+\frac{\mathrm{I} \operatorname{polylog}\left(2,\left(\frac{\mathrm{I}}{x^{5} a}+\sqrt{1-\frac{1}{x^{10} a^{2}}}\right)^{2}\right)}{10}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{arccsc}\left(x^{5} a\right)}{x} \mathrm{~d} x
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{arccsc}\left(\frac{a}{x}\right) \mathrm{d} x
$$

Optimal(type 3, 39 leaves, 4 steps):

$$
-\frac{a^{2} \arcsin \left(\frac{x}{a}\right)}{4}+\frac{x^{2} \arcsin \left(\frac{x}{a}\right)}{2}+\frac{a x \sqrt{1-\frac{x^{2}}{a^{2}}}}{4}
$$

Result(type 3, 92 leaves):

$$
\frac{x^{2} \operatorname{arccsc}\left(\frac{a}{x}\right)}{2}-\frac{a \sqrt{\frac{a^{2}}{x^{2}}-1} x \arctan \left(\frac{1}{\sqrt{\frac{a^{2}}{x^{2}}-1}}\right)}{4 \sqrt{\frac{\left(\frac{a^{2}}{x^{2}}-1\right) x^{2}}{a^{2}}}}+\frac{\left(\frac{a^{2}}{x^{2}}-1\right) x^{3}}{4 a \sqrt{\frac{\left(\frac{a^{2}}{x^{2}}-1\right) x^{2}}{a^{2}}}}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int x^{4} \operatorname{arccsc}(b x+a) \mathrm{d} x
$$

Optimal(type 3, 173 leaves, 9 steps):
$\frac{a^{5} \operatorname{arccsc}(b x+a)}{5 b^{5}}+\frac{x^{5} \operatorname{arccsc}(b x+a)}{5}+\frac{\left(40 a^{4}+40 a^{2}+3\right) \operatorname{arctanh}\left(\sqrt{1-\frac{1}{(b x+a)^{2}}}\right)}{40 b^{5}}-\frac{a\left(53 a^{2}+20\right)(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{30 b^{5}}$

$$
-\frac{11 a x^{2}(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{60 b^{3}}+\frac{x^{3}(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{20 b^{2}}+\frac{\left(58 a^{2}+9\right)(b x+a)^{2} \sqrt{1-\frac{1}{(b x+a)^{2}}}}{120 b^{5}}
$$

Result(type 3, 506 leaves):

$$
\begin{aligned}
& \frac{\left((b x+a)^{2}-1\right) x^{3}}{20 b^{2} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{\sqrt{(b x+a)^{2}-1} a^{5} \arctan \left(\frac{1}{\sqrt{(b x+a)^{2}-1}}\right)}{5 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{\sqrt{(b x+a)^{2}-1} a^{4} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& +\frac{3\left((b x+a)^{2}-1\right) x}{40 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{\sqrt{(b x+a)^{2}-1} a^{2} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{x^{5} \operatorname{arccsc}(b x+a)}{5} \\
& -\frac{77\left((b x+a)^{2}-1\right) a^{3}}{60 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{71\left((b x+a)^{2}-1\right) a}{120 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{3 \sqrt{(b x+a)^{2}-1} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{40 b^{5} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& -\frac{11\left((b x+a)^{2}-1\right) x^{2} a}{}+ \\
& 29\left((b x+a)^{2}-1\right) x a^{2} \\
& 60 b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a) \quad 60 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \operatorname{arccsc}(b x+a) \mathrm{d} x
$$

Optimal(type 3, 135 leaves, 8 steps):
$-\frac{a^{4} \operatorname{arccsc}(b x+a)}{4 b^{4}}+\frac{x^{4} \operatorname{arccsc}(b x+a)}{4}-\frac{a\left(2 a^{2}+1\right) \operatorname{arctanh}\left(\sqrt{1-\frac{1}{(b x+a)^{2}}}\right)}{2 b^{4}}+\frac{\left(17 a^{2}+2\right)(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{12 b^{4}}$

$$
+\frac{x^{2}(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{12 b^{2}}-\frac{a(b x+a)^{2} \sqrt{1-\frac{1}{(b x+a)^{2}}}}{3 b^{4}}
$$

Result(type 3, 359 leaves):

$$
\begin{aligned}
& \frac{x^{4} \operatorname{arccsc}(b x+a)}{4}+\frac{\left((b x+a)^{2}-1\right) x^{2}}{12 b^{2} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{\sqrt{(b x+a)^{2}-1} a^{4} \arctan \left(\frac{1}{\sqrt{(b x+a)^{2}-1}}\right)}{b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{\left((b x+a)^{2}-1\right) x a}{4 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& -\frac{\sqrt{(b x+a)^{2}-1} a^{3} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{3 b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& +\frac{13\left((b x+a)^{2}-1\right) a^{2}}{12 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{\sqrt{(b x+a)^{2}-1} a \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{2 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& 6 b^{4} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)
\end{aligned}
$$

Problem 9: Result more than twice size of optimal antiderivative.
$\int x^{2} \operatorname{arccsc}(b x+a) d x$
Optimal(type 3, 100 leaves, 7 steps):
$\frac{a^{3} \operatorname{arccsc}(b x+a)}{3 b^{3}}+\frac{x^{3} \operatorname{arccsc}(b x+a)}{3}+\frac{\left(6 a^{2}+1\right) \operatorname{arctanh}\left(\sqrt{1-\frac{1}{(b x+a)^{2}}}\right)}{6 b^{3}}-\frac{5 a(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{6 b^{3}}$

$$
+\frac{x(b x+a) \sqrt{1-\frac{1}{(b x+a)^{2}}}}{6 b^{2}}
$$

Result(type 3, 271 leaves):

$$
\begin{aligned}
& \frac{x^{3} \operatorname{arccsc}(b x+a)}{3}+\frac{\sqrt{(b x+a)^{2}-1} a^{3} \arctan \left(\frac{1}{\sqrt{(b x+a)^{2}-1}}\right)}{3 b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{\left((b x+a)^{2}-1\right) x}{6 b^{2} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)} \\
& \quad+\frac{\sqrt{(b x+a)^{2}-1} a^{2} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}-\frac{5\left((b x+a)^{2}-1\right) a}{6 b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}+\frac{\sqrt{(b x+a)^{2}-1} \ln \left(b x+a+\sqrt{(b x+a)^{2}-1}\right)}{6 b^{3} \sqrt{\frac{(b x+a)^{2}-1}{(b x+a)^{2}}}(b x+a)}
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccsc}(b x+a)}{x^{2}} d x
$$

Optimal(type 3, 63 leaves, 6 steps):

$$
-\frac{b \operatorname{arccsc}(b x+a)}{a}-\frac{\operatorname{arccsc}(b x+a)}{x}-\frac{2 b \arctan \left(\frac{a-\tan \left(\frac{\operatorname{arccsc}(b x+a)}{2}\right)}{a \sqrt{-a^{2}+1}}\right)}{\sqrt{-a^{2}+1}}
$$

Result(type 3, 153 leaves):

Problem 13: Unable to integrate problem.

$$
\int x^{-1+n} \operatorname{arccsc}\left(a+b x^{n}\right) \mathrm{d} x
$$

Optimal (type 3, 46 leaves, 6 steps):

$$
\frac{\left(a+b x^{n}\right) \operatorname{arccsc}\left(a+b x^{n}\right)}{b n}+\frac{\operatorname{arctanh}\left(\sqrt{1-\frac{1}{\left(a+b x^{n}\right)^{2}}}\right)}{b n}
$$

Result(type 8, 16 leaves):

$$
\int x^{-1+n} \operatorname{arccsc}\left(a+b x^{n}\right) \mathrm{d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \mathrm{e}^{\operatorname{arccsc}(a x)} x^{2} \mathrm{~d} x
$$

Optimal(type 5, 101 leaves, 6 steps):
$\frac{\left(\frac{4}{5}-\frac{12 \mathrm{I}}{5}\right) \mathrm{e}^{(1+3 \mathrm{I}) \operatorname{arccsc}(a x)} \operatorname{hypergeom}\left(\left[3, \frac{3}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{5}{2}-\frac{\mathrm{I}}{2}\right],\left(\frac{\mathrm{I}}{a x}+\sqrt{1-\frac{1}{x^{2} a^{2}}}\right)^{2}\right)}{a^{3}}$

$$
+\frac{\left(-\frac{8}{5}+\frac{24 \mathrm{I}}{5}\right) \mathrm{e}^{(1+3 \mathrm{I}) \operatorname{arccsc}(a x)} \operatorname{hypergeom}\left(\left[4, \frac{3}{2}-\frac{\mathrm{I}}{2}\right],\left[\frac{5}{2}-\frac{\mathrm{I}}{2}\right],\left(\frac{\mathrm{I}}{a x}+\sqrt{1-\frac{1}{x^{2} a^{2}}}\right)^{2}\right)}{a^{3}}
$$

Result(type 8, 11 leaves):

$$
\int \mathrm{e}^{\operatorname{arccsc}(a x)} x^{2} \mathrm{~d} x
$$

Problem 15: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\operatorname{arccsc}(a x)}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 31 leaves, 3 steps):

$$
-\frac{\mathrm{e}^{\operatorname{arccsc}(a x)}}{2 x}-\frac{a \mathrm{e}^{\operatorname{arccsc}(a x)} \sqrt{1-\frac{1}{x^{2} a^{2}}}}{2}
$$

Result(type 8, 11 leaves):

$$
\int \frac{\mathrm{e}^{\operatorname{arccsc}(a x)}}{x^{2}} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\operatorname{arccsc}(a x)}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 70 leaves, 6 steps):

$$
-\frac{a^{2} \mathrm{e}^{\operatorname{arccsc}(a x)}}{8 x}+\frac{a^{3} \mathrm{e}^{\operatorname{arccsc}(a x)} \cos (3 \operatorname{arccsc}(a x))}{40}+\frac{3 a^{3} \mathrm{e}^{\operatorname{arccsc}(a x)} \sin (3 \operatorname{arccsc}(a x))}{40}-\frac{a^{3} \mathrm{e}^{\operatorname{arccsc}(a x)} \sqrt{1-\frac{1}{x^{2} a^{2}}}}{8}
$$

Result(type 8, 11 leaves):

$$
\int \frac{\mathrm{e}^{\operatorname{arccsc}(a x)}}{x^{4}} \mathrm{~d} x
$$

Summary of Integration Test Results

65 integration problems

A - 28 optimal antiderivatives
B - 17 more than twice size of optimal antiderivatives
C - 0 unnecessarily complex antiderivatives
D - 20 unable to integrate problems
E - O integration timeouts

